Chapter 6

INTERFACES
Overview

• Interface types
 – highlight the main design and research issues for each of the different interfaces

• Consider which interface is best for a given application or activity
1. Command-based

- Commands such as abbreviations (e.g. ls) typed in at the prompt to which the system responds (e.g. listing current files)
- Some are hard wired at keyboard, others can be assigned to keys
- Efficient, precise, and fast
- Large overhead to learning set of commands
Second Life command-based interface for visually impaired users

Figure 6.1 Second Life command-based interface for visually impaired users

Research and design issues

• Form, name types and structure are key research questions

• Consistency is most important design principle
 – e.g. always use first letter of command

• Command interfaces popular for web scripting
2. WIMP and GUI

• Xerox Star first WIMP -> rise to GUIs

• Windows
 – could be scrolled, stretched, overlapped, opened, closed, and moved around the screen using the mouse

• Icons
 – represented applications, objects, commands, and tools that were opened when clicked on

• Menus
 – offering lists of options that could be scrolled through and selected

• Pointing device
 – a mouse controlling the cursor as a point of entry to the windows, menus, and icons on the screen
GUIs

• Same basic building blocks as WIMPs but more varied
 – Color, 3D, sound, animation,
 – Many types of menus, icons, windows

• New graphical elements, e.g.
 – toolbars, docks, rollovers

• Challenge now is to design GUIs that are best suited for tablet, smartphone and smartwatch interfaces
Windows

- Windows were invented to overcome physical constraints of a computer display
 - enable more information to be viewed and tasks to be performed

- Scroll bars within windows also enable more information to be viewed

- Multiple windows can make it difficult to find desired one
 - listing, iconising, shrinking are techniques that help
Figure 6.2 The boxy look of the first generation of GUIs. The window presents several check boxes, notes boxes, and options as square buttons.

Apple’s shrinking windows
Safari panorama window view

Figure 6.3 A window management technique provided in Safari: pressing the 4×3 icon in the top left corner of the bookmarks bar displays the 12 top sites visited, by shrinking them and placing them side by side. This enables the user to see them all at a glance and be able to rapidly switch between them.
Research and design issues

• Window management
 – enables users to move fluidly between different windows (and monitors)

• How to switch attention between windows without getting distracted

• Design principles of spacing, grouping, and simplicity should be used
Menus

• A number of menu interface styles
 – flat lists, drop-down, pop-up, contextual, and expanding ones, e.g., scrolling and cascading

• Flat menus
 – good at displaying a small number of options at the same time and where the size of the display is small, e.g. iPods
 – but have to nest the lists of options within each other, requiring several steps to get to the list with the desired option
 – moving through previous screens can be tedious
Expanding menus

• Enables more options to be shown on a single screen than is possible with a single flat menu

• More flexible navigation, allowing for selection of options to be done in the same window

• Most popular are cascading ones
 – primary, secondary and even tertiary menus
 – downside is that they require precise mouse control
 – can result in overshooting or selecting wrong options
Cascading menu

Figure 6.7 A cascading menu
Contextual menus

• Provide access to often-used commands that make sense in the context of a current task

• Appear when the user presses the Control key while clicking on an interface element
 – e.g., clicking on a photo in a website together with holding down the Control key results in options ‘open it in a new window,’ ‘save it,’ or ‘copy it’

• Helps overcome some of the navigation problems associated with cascading menus
Windows Jump List Menu

Figure 6.8 Windows jump list
Research and design issues

• What are best names/labels/phrases to use?
• Placement in list is critical
 – Quit and save need to be far apart
• Choice of menu to use determined by application and type of system
 – flat menus are best for displaying a small number of options at one time
 – expanding menus are good for showing a large number of options
Icon design

• Icons are assumed to be easier to learn and remember than commands

• Can be designed to be compact and variably positioned on a screen

• Now pervasive in every interface

 – e.g. represent desktop objects, tools (e.g. paintbrush), applications (e.g. web browser), and operations (e.g. cut, paste, next, accept, change)
Icons

• Since the Xerox Star days icons have changed in their look and feel:
 – black and white -> color, shadowing, photorealistic images, 3D rendering, and animation

• Many designed to be very detailed and animated making them both visually attractive and informative

• GUIs now highly inviting, emotionally appealing, and feel alive
Icon forms

• The mapping between the representation and underlying referent can be:
 – similar (e.g., a picture of a file to represent the object file)
 – analogical (e.g., a picture of a pair of scissors to represent ‘cut’)
 – arbitrary (e.g., the use of an X to represent ‘delete’)

• Most effective icons are similar ones

• Many operations are actions making it more difficult to represent them
 – use a combination of objects and symbols that capture the salient part of an action
Early icons

Figure 6.9 Poor icon set from the early 1990s. What do you think they mean and why are they so bad?

Newer icons

Figure 6.11 Contrasting genres of Aqua icons used for the Mac. The top row of icons have been designed for user applications and the bottom row for utility applications.
Simple flat 2D icons

Figure 6.12 Flat 2D icons designed for smartphone apps
Activity

• Sketch simple icons to represent the following operations to appear on a digital camera screen:
 – Turn image 90 degrees sideways
 – Auto-enhance the image
 – Fix red-eye
 – Crop the image

• Show them to someone else and see if they can understand what each represents
Basic edit icons on iPhone

- Which is which?
- Are they easy to understand?
- Are they distinguishable?
- What representation forms are used?
- How do yours compare?
Research and design issues

• There is a wealth of resources now so do not have to draw or invent new icons from scratch
 – guidelines, style guides, icon builders, libraries

• Text labels can be used alongside icons to help identification for small icon sets

• For large icon sets (e.g. photo editing or word processing) use rollovers
Mobile GUIs

• Handheld devices intended to be used while on the move

• Have become pervasive, increasingly used in all aspects of everyday and working life

• Apps running on mobiles have greatly expanded, e.g.
 – used in restaurants to take orders
 – car rentals to check in car returns
 – supermarkets for checking stock
 – in the streets for multi-user gaming
 – in education to support life-long learning
The advent of the iPhone app

• A whole new user experience that was designed primarily for people to enjoy

 – many apps not designed for any need, want or use but purely for idle moments to have some fun

 – e.g. iBeer developed by magician Steve Sheraton

 – ingenious use of the accelerometer that is inside the phone
Figure 6.20 The iBeer smartphone app

Source: iBeer™ Photo ©2010 HOTTRIX® Reproduced with permission.
QR codes and cell phones

Figure 6.21 QR code appearing on a magazine page
Mobile challenges

• Smaller screens, small number of physical keys and restricted number of controls

• Innovative physical designs including:
 – roller wheels, rocker dials, up/down ‘lips’ on the face of phones, 2-way and 4-way directional keypads, softkeys, silk-screened buttons

• Usability and preference varies
 – depends on the dexterity and commitment of the user

• Smartphones overcome mobile physical constraints through using multi-touch displays
Research and design issues

• Mobile interfaces can be tricky and cumbersome to use for those with poor manual dexterity or ‘fat’ fingers

• Key concern is hit area
 – area on the phone display that the user touches to make something happen, such as a key, an icon, a button or an app
 – space needs to be big enough for fat fingers to accurately press
 – if too small the user may accidentally press the wrong key
Speech

• Where a person talks with a system that has a spoken language application, e.g. timetable, travel planner

• Used most for inquiring about very specific information, e.g. flight times or to perform a transaction, e.g. buy a ticket

• Also used by people with disabilities
 – e.g. speech recognition word processors, page scanners, web readers, home control systems
Have speech interfaces come of age?
Get me a human operator!

• Most popular use of speech interfaces currently is for call routing

• Caller-led speech where users state their needs in their own words
 – e.g. “I’m having problems with my voice mail”

• Idea is they are automatically forwarded to the appropriate service

• What is your experience of speech systems?
Format

• Directed dialogs are where the system is in control of the conversation
• Ask specific questions and require specific responses
• More flexible systems allow the user to take the initiative:
 – e.g. “I’d like to go to Paris next Monday for two weeks.”
• More chance of error, since caller might assume that the system is like a human
• Guided prompts can help callers back on track
 – e.g. “Sorry I did not get all that. Did you say you wanted to fly next Monday?”
Research and design issues

• How to design systems that can keep conversation on track
 – help people navigate efficiently through a menu system
 – enable them to easily recover from errors
 – guide those who are vague or ambiguous in their requests for information or services

• Type of voice actor (e.g. male, female, neutral, or dialect)
 – do people prefer to listen to and are more patient with a female or male voice, a northern or southern accent?
Pen

- Enable people to write, draw, select, and move objects at an interface using lightpens or styluses
 - capitalize on the well-honed drawing skills developed from childhood

- Digital pens, e.g. Anoto, use a combination of ordinary ink pen with digital camera that digitally records everything written with the pen on special paper
Pros and cons

• Allows users to quickly and easily annotate existing documents

• Can be difficult to see options on the screen because a user’s hand can occlude part of it when writing

• Can have lag and feel clunky
Touch

• Touch screens, such as walk-up kiosks, detect the presence and location of a person’s touch on the display

• Multi-touch support a range of more dynamic finger tip actions, e.g. swiping, flicking, pinching, pushing and tapping

• Now used for many kinds of displays, such as Smartphones, iPods, tablets and tabletops
Research and design issues

• More fluid and direct styles of interaction involving freehand and pen-based gestures

• Core design concerns include whether size, orientation, and shape of touch displays effect collaboration

• Much faster to scroll through wheels, carousels and bars of thumbnail images or lists of options by finger flicking

• More cumbersome, error-prone and slower to type using a virtual keyboard on a touch display than using a physical keyboard
Research and design issues

- Will finger-flicking, swiping, stroking and touching a screen result in new ways of consuming, reading, creating and searching digital content?

Figure 6.23 The Swype interface developed for mobile touch displays

NUIs...Gestures

- Uses camera recognition, sensor and computer vision techniques
 - can recognize people’s body, arm and hand gestures in a room
 - systems include Kinect

- Movements are mapped onto a variety of gaming motions, such as swinging, bowling, hitting and punching

- Players represented on the screen as avatars doing same actions
Gestures in the operating theatre

- A touchless system that recognizes gestures
- Surgeons can interact with and manipulate MRI or CT images
 - e.g. two-handed gestures for zooming and panning

Figure 6.25 Touchless gesturing in the operating theater
Source: Courtesy of Kenton O’Hara, Microsoft.
Research and design issues

• How does computer recognize and delineate user’s gestures?
 – Deictic and hand waving

• Does holding a control device feel more intuitive than controller free gestures?
 – For gaming, exercising, dancing
Haptic

- **Tactile feedback**
 - applying vibration and forces to a person’s body, using actuators that are embedded in their clothing or a device they are carrying, such as a smartphone

- Can enrich user experience or nudge them to correct error

- Can also be used to simulate the sense of touch between remote people who want to communicate
Realtime vibrotactile feedback

• Provides nudges when playing incorrectly
• Uses motion capture
• Nudges are vibrations on arms and hands
Research and design issues

- Where best to place actuators on body
- Whether to use single or sequence of ‘touches’
- When to buzz and how intense
- How does the wearer feel it in different contexts?
- What kind of new smartphones/smart-watches apps can use vibrotactile creatively?
 - e.g. slow tapping to feel like water dropping that is meant to indicate it is about to rain and heavy tapping to indicate a thunderstorm is looming
Multi-modal

• Meant to provide enriched and complex user experiences
 – multiplying how information is experienced and detected using different modalities, i.e. touch, sight, sound, speech
 – support more flexible, efficient, and expressive means of human–computer interaction
 – Most common is speech and vision
Research and design issues

• Need to recognize and analyse speech, gesture, and eye gaze

• What is gained from combining different input and outputs

• Is talking and gesturing, as humans do with other humans, a natural way of interacting with a computer?
Shareable

• Shareable interfaces are designed for more than one person to use
 – provide multiple inputs and sometimes allow simultaneous input by co-located groups
 – large wall displays where people use their own pens or gestures
 – interactive tabletops where small groups interact with information using their fingertips
 – e.g. DiamondTouch, Smart Table and Surface
A smartboard

Figure 6.27 (a) A SmartBoard in use during a meeting and (b) Mitsubishi’s interactive tabletop interface, where collocated users can interact simultaneously with digital content using their fingertips.

Source: (a) ©2006 SMART Technologies Inc. Used with permission. (b) Image courtesy of Mitsubishi Electric Research Labs.
DiamondTouch Tabletop

Figure 6.27 (a) A SmartBoard in use during a meeting and (b) Mitsubishi’s interactive tabletop interface, where collocated users can interact simultaneously with digital content using their fingertips.

Source: (a) ©2006 SMART Technologies Inc. Used with permission. (b) Image courtesy of Mitsubishi Electric Research Labs.
Advantages

• Provide a large interactional space that can support flexible group working

• Can be used by multiple users
 – Can point to and touch information being displayed
 – Simultaneously view the interactions and have same shared point of reference as others

• Can support more equitable participation compared with groups using single PC
Research and design issues

• More fluid and direct styles of interaction involving freehand and pen-based gestures

• Core design concerns include whether size, orientation, and shape of the display have an effect on collaboration

• Horizontal surfaces compared with vertical ones support more turn-taking and collaborative working in co-located groups

• Providing larger-sized tabletops does not improve group working but encourages more division of labor
Tangible (TUI)

• Type of sensor-based interaction, where physical objects, e.g., bricks, are coupled with digital representations

• When a person manipulates the physical object/s it causes a digital effect to occur, e.g. an animation

• Digital effects can take place in a number of media and places or can be embedded in the physical object
Examples

• Chromarium cubes
 – when turned over digital animations of color are mixed on an adjacent wall
 – facilitates creativity and collaborative exploration

• Flow Blocks
 – depict changing numbers and lights embedded in the blocks
 – vary depending on how they are connected together

• Urp
 – physical models of buildings moved around on tabletop
 – used in combination with tokens for wind and shadows -> digital shadows surrounding them to change over time
Benefits

• Can be held in both hands and combined and manipulated in ways not possible using other interfaces
 – allows for more than one person to explore the interface together
 – objects can be placed on top of each other, beside each other, and inside each other
 – encourages different ways of representing and exploring a problem space

• People are able to see and understand situations differently
 – can lead to greater insight, learning, and problem-solving than with other kinds of interfaces
 – can facilitate creativity and reflection
VoxBox

- A tangible system that gathers opinions at events through playful and engaging interaction (Goldsteijn et al, 2015)
Research and design issues

• Develop new conceptual frameworks that identify novel and specific features

• The kind of coupling to use between the physical action and digital effect
 – If it is to support learning then an explicit mapping between action and effect is critical
 – If it is for entertainment then can be better to design it to be more implicit and unexpected

• What kind of physical artifact to use
 – Bricks, cubes, and other component sets are most commonly used because of flexibility and simplicity
 – Stickies and cardboard tokens can also be used for placing material onto a surface
Virtual reality

• Computer-generated graphical simulations providing:
 – “the illusion of participation in a synthetic environment rather than external observation of such an environment” (Gigante, 1993)

• Provide new kinds of experience, enabling users to interact with objects and navigate in 3D space

• Create highly engaging user experiences
Pros and cons

• Can have a higher level of fidelity with objects they represent compared to multimedia

• Induces a sense of presence where someone is totally engrossed by the experience
 – “a state of consciousness, the (psychological) sense of being in the virtual environment” (Slater and Wilbur, 1999)

• Provides different viewpoints: 1st and 3rd person

• Head-mounted displays are uncomfortable to wear, and can cause motion sickness and disorientation
Research and design issues

• Much research on how to design safe and realistic VRs to facilitate training
 – e.g. flying simulators
 – help people overcome phobias (e.g. spiders, talking in public)

• Design issues
 – how best to navigate through them (e.g. first versus third person)
 – how to control interactions and movements (e.g. use of head and body movements)
 – how best to interact with information (e.g. use of keypads, pointing, joystick buttons);
 – level of realism to aim for to engender a sense of presence
Which is the most engaging game of Snake?

Figure 6.16 Two screenshots from the game Snake – the one on the left is played on a PC and the one on the right on a cell phone. In both games, the goal is to move the snake (the blue thing and the black squares, respectively) towards targets that pop up on the screen (e.g. the bridge, the star) and to avoid obstacles (e.g. a flower, the end of the snake’s tail). When a player successfully moves his snake head over or under a target, the snake increases its length by one blob or block. The longer the snake gets, the harder it is to avoid obstacles. If the snake hits an obstacle, the game is over. On the PC version there are lots of extra features that make the game more complicated, including more obstacles and ways of moving. The cell phone version has a simple 2D bird’s eye representation, whereas the PC version adopts a 3D third-person avatar perspective.
Augmented and mixed reality

- Augmented reality - virtual representations are superimposed on physical devices and objects
- Mixed reality - views of the real world are combined with views of a virtual environment
- Many applications including medicine, games, flying, and everyday exploring
Examples

• In medicine
 – virtual objects, e.g. X-rays and scans, are overlaid on part of a patient’s body
 – aid the physician’s understanding of what is being examined or operated

• In air traffic control
 – dynamic information about aircraft overlaid on a video screen showing the real planes, etc. landing, taking off, and taxiing
 – Helps identify planes difficult to make out
An augmented map

Figure 6.30 An augmented map showing the flooded areas at high water level overlaid on the paper map. The handheld device is used to interact with entities referenced on the map.

Source: Reproduced with permission.
Top Gear James May in AR

- Appears as a 3D character to act as personal tour guide at Science Museum

Figure 6.31 James May appearing in 3D Augmented Reality
Roberto Baldwin/Wired/©Conde Nast
Research and design issues

• What kind of digital augmentation?
 – When and where in physical environment?
 – Needs to stand out but not distract from ongoing task
 – Need to be able to align with real world objects

• What kind of device?
 – Smartphone, head up display or other?
Wearables

• First developments were head- and eyewear-mounted cameras that enabled user to record what was seen and to access digital information

• Since, jewellery, head-mounted caps, smart fabrics, glasses, shoes, and jackets have all been used

 – provide the user with a means of interacting with digital information while on the move

• Applications include automatic diaries, tour guides, cycle indicators and fashion clothing
Google Glass: short-lived

- What were the pros and cons?

Figure 6.32 Google Glass
Source: https://www.google.co.uk/intl/en/glass/start/
Google and the Google logo are registered trademarks of Google Inc., used with permission.
Research and design issues

• **Comfort**
 – needs to be light, small, not get in the way, fashionable, and preferably hidden in the clothing

• **Hygiene**
 – is it possible to wash or clean the clothing once worn?

• **Ease of wear**
 – how easy is it to remove the electronic gadgetry and replace it?

• **Usability**
 – how does the user control the devices that are embedded in the clothing?
Robots

• Many types of robots
 – remote robots used in hazardous settings
 – domestic robots helping around the house
 – pet robots as human companions
 – sociable robots that work collaboratively with humans, and communicate and socialize with them – as if they were our peers
Advantages

• Pet robots are assumed to have therapeutic qualities, helping to reduce stress and loneliness

• Remote robots can be controlled to investigate bombs and other dangerous materials

Figure 6.33 Left: Mel, the penguin robot, designed to host activities; right: Japan’s Paro, an interactive seal, designed as a companion, primarily for the elderly and sick children

Source: (left) Image courtesy of Mitsubishi Electric Research Labs. (right) Courtesy of Parorobots.com.
Drones

• Unmanned aircraft that are controlled remotely and used in a number of contexts
 – e.g. entertainment, such as carrying drinks and food to people at festivals and parties;
 – agricultural applications, such as flying them over vineyards and fields to collect data that is useful to farmers
 – helping to track poachers in wildlife parks in Africa

• Can fly low and stream photos to a ground station, where images can be stitched together into maps

• Can be used to determine the health of a crop or when it is the best time to harvest the crop
Drone in vineyard

Figure 6.34 A drone being used to survey the state of a vineyard
Source: Courtesy of Discover Sonoma County Wine
Research and design issues

• How do humans react to physical robots designed to exhibit behaviors (e.g. making facial expressions) compared with virtual ones?

• Should robots be designed to be human-like or look like and behave like robots that serve a clearly defined purpose?

• Should the interaction be designed to enable people to interact with the robot as if it was another human being or more human-computer-like (e.g. pressing buttons to issue commands)?

• Is it acceptable to use unmanned drones to take a series of images or videos of fields, towns, and private property without permission or people knowing what is happening?
Brain-computer interfaces

• Brain–computer interfaces (BCI) provide a communication pathway between a person’s brain waves and an external device, such as a cursor on a screen.

• Person is trained to concentrate on the task, e.g. moving the cursor.

• BCIs work through detecting changes in the neural functioning in the brain.

• BCIs apps:
 – Games
 – enable people who are paralysed to control robots.
Figure 6.35 The Brainball game using a brain–computer interface

Source: “Brainball” from The Interactive Institute. Reproduced with permission.
Which interface?

• Is multimedia better than tangible interfaces for learning?
• Is speech as effective as a command-based interface?
• Is a multimodal interface more effective than a monomodal interface?
• Will wearable interfaces be better than mobile interfaces for helping people find information in foreign cities?
• Are virtual environments the ultimate interface for playing games?
• Will shareable interfaces be better at supporting communication and collaboration compared with using networked desktop PCs?
Which interface?

- Will depend on task, users, context, cost, robustness, etc.
- Mobile platforms taking over from PCs
- Speech interfaces also being used much more for a variety of commercial services
- Appliance and vehicle interfaces becoming more important
- Shareable and tangible interfaces entering our homes, schools, public places, and workplaces
Summary

• Many innovative interfaces have emerged post the WIMP/GUI era, including speech, wearable, mobile, brain and tangible

• Raises many design and research questions to decide which to use
 – e.g. how best to represent information to the user so they can carry out ongoing activity or task

• New interfaces that are context-aware or monitor raise ethical issues concerned with what data is being collected and what it is used for