CHAPTER 1:
Usability of Interactive Systems

Designing the User Interface:
Strategies for Effective Human-Computer Interaction

Fifth Edition

Ben Shneiderman & Catherine Plaisant

in collaboration with

Maxine S. Cohen and Steven M. Jacobs

modifications by

David Claveau

© 2010 Pearson Addison-Wesley. All rights reserved.
Designing an Interactive System
Many Design Processes…
YOUR USER REQUIREMENTS INCLUDE FOUR HUNDRED FEATURES.

DO YOU REALIZE THAT NO HUMAN WOULD BE ABLE TO USE A PRODUCT WITH THAT LEVEL OF COMPLEXITY?

GOOD POINT. I'D BETTER ADD "EASY TO USE" TO THE LIST.
First step: “Identify and define the problem” → requirements analysis

- **Understand** the type of interactive system and its **social context**
- **Understand** the **user** community (age, experience, culture)
 - frequent users
 - occasional users
- Identify the **tasks** and subtasks that must be carried out by the user
- Distinguish between common/frequent tasks and infrequent tasks
- Identify any **standards** that need to be followed for these tasks (industry standards, legal issues)
Last step: Evaluating and Testing Interactive Systems

Usability measures

- **Time to learn**
 How long does it take for typical members of the community to learn relevant task?

- **Speed of performance**
 How long does it take to perform relevant benchmarks?

- **Rate of errors by users**
 How many and what kinds of errors are made during benchmark tasks?

- **Retention over time**
 Frequency of use and ease of learning help make for better user retention.

- **Subjective satisfaction**
 Allow for user feedback via interviews, free-form comments and satisfaction scales.
Design alternatives can be evaluated by designers and users via mockups or prototypes (low or high-fidelity).

- The tradeoff is getting feedback early and perhaps at a lower cost in the development process versus having a more authentic interface evaluated.
Types of Interactive Systems

Life-critical systems

- Air traffic control, nuclear reactors, power utilities, police & fire dispatch systems, medical equipment
- Reliability and effectiveness are expected
- Lengthy training periods are acceptable despite the financial cost to provide error-free performance and avoid the low frequency but high cost errors
- Subject satisfaction is less an issue due to well motivated users
• **Industrial and commercial systems**

 – Banking, insurance, order entry, inventory management, reservation, billing, and point-of-sales systems
 – Ease of learning is important to reduce training costs
 – Speed and error rates are relative to cost
 – Speed of performance is important because of the number of transactions
 – Subjective satisfaction is fairly important to limit operator burnout
Office, home, and entertainment applications

- Word processing, electronic mail, computer conferencing, and video game systems, educational packages, search engines, mobile device, etc.
- Ease of learning, low error rates, and subjective satisfaction are paramount due to use is often discretionary and competition fierce
- Infrequent use of some applications means interfaces must be intuitive and easy to use online help is important
- Choosing functionality is difficult because the population has a wide range of both novice and expert users
- Competition: need for low cost
- New games and gaming devices!
 - Nintendo Wii
• Exploratory, creative, and cooperative systems
 – Web browsing, search engines, artist toolkits, architectural design, software development, music composition, and scientific modeling systems
 – Collaborative work
 – Benchmarks are hard to describe for exploratory tasks and device users
 – With these applications, the computer should be transparent so that the user can be absorbed in their task domain
• Social-technical systems

 – Complex systems that involve many people over long time periods
 – Voting, health support, identity verification, crime reporting
 – Trust, privacy, responsibility, and security are issues
 – Verifiable sources and status feedback are important
 – Ease of learning for novices and feedback to build trust
 – Administrators need tools to detect unusual patterns of usage
The User

- Physical abilities and physical workplaces
 - Basic data about human dimensions comes from research in *anthropometry*
 - There is no average user; either compromises must be made or multiple versions of a system must be created
 - Physical measurement of human dimensions are not enough; take into account dynamic measures such as reach, strength, speed
• variances in perception:

 • Vision: brightness, contrast, color blindness, and motion sensitivity
 • Touch: keyboard and touchscreen sensitivity
 • Hearing: audio clues must be distinct
• **Ergonomics**: a multidisciplinary field concerning the design of equipment and devices that fit the human body and human cognitive abilities. The two terms "human factors" and "ergonomics" are generally synonymous.

• The standard *ANSI/HFES 100-2007 Human Factors Engineering of Computer Workstations* (2007) lists these concerns:
 – Work-surface and display-support height
 – Clearance under work surface for legs
 – Work-surface width and depth
 – Adjustability of heights and angles for chairs and work surfaces
 – Posture - seating depth and angle; back-rest height and lumbar support
 – Availability of armrests, footrests, and palmrests
• Cognitive and perceptual abilities

 – The human ability to interpret sensory input rapidly and to initiate complex actions makes modern computer systems possible

 – The journal *Ergonomics Abstracts* offers this classification of human cognitive processes:

 • Long-term and semantic memory
 • Short-term and working memory
 • Problem solving and reasoning
 • Decision making and risk assessment
 • Language communication and comprehension
 • Search, imagery, and sensory memory
 • Learning, skill development, knowledge acquisition, and concept attainment
They also suggest this set of factors affecting perceptual and motor performance:

- Arousal and vigilance
- Fatigue and sleep deprivation
- Perceptual (mental) load
- Knowledge of results and feedback
- Monotony and boredom
- Sensory deprivation
- Nutrition and diet
- Fear, anxiety, mood, and emotion
- Drugs, smoking, and alcohol
- Physiological rhythms

In any application, background experience and knowledge in the task domain and the interface domain play key roles in learning and performance.
• Personality differences

- There is no set taxonomy for identifying user personality types

- Myers-Briggs Type Indicator (MBTI)

 • extroversion versus introversion

 • sensing versus intuition

 • perceptive versus judging

 • feeling versus thinking
• Cultural and international diversity

 – Characters, numerals, special characters, and diacriticals
 – Left-to-right versus right-to-left versus vertical input and reading
 – Date and time formats
 – Numeric and currency formats
 – Weights and measures
 – Telephone numbers and addresses
 – Names and titles (Mr., Ms., Mme.)
 – Social-security, national identification, and passport numbers
 – Capitalization and punctuation
 – Sorting sequences
 – Icons, buttons, colors
 – Pluralization, grammar, spelling
 – Etiquette, policies, tone, formality, metaphors
• Users with physical challenges
 – Designers must plan early to accommodate users with disabilities
 – Early planning is more cost efficient than adding on later
 – Businesses must comply with the "Americans With Disabilities" Act for some applications

• Older Adult Users
 – Designers should allow for variability within their applications via settings for sound, color, brightness, font sizes, etc. with less distracting animation
• Younger users
User-Centered Design (UCD) Principles
• early focus on users
• early & continual user testing
• iterative design process
“In-the-field” User Observation

- watch subjects perform their tasks
 what are these tasks?
- record your observations
- as you observe, ask yourselves:
 did your presence affect the subjects?
- after you’ve observed several subjects
 organize your observations – what did you learn?
Design Exercise