Math 351: The First Homework Set.

1. (a) If \(p \) is a prime number, then prove that \(\sqrt{p} \) is irrational.
 You can assume the fact that if \(ab \) is divisible by \(p \) for some integers \(a \) and \(b \),
 then \(a \) or \(b \) is divisible by \(p \).

 (b) Prove that \(\sqrt{6} \) is irrational.

2. If \(r \) is a nonzero rational number and \(x \) is an irrational number, prove that \(r + x \) and \(rx \) are both irrational. (You may assume that \(\mathbb{Q} \) is closed under addition and multiplication.)

3. Show that \(\sqrt{2} + \sqrt{3} \) is irrational.

4. Show that \(\log_2 3 \) is irrational.

5. Suppose that \(x \) is a nonnegative real number such that \(x < \epsilon \) for any choice of \(\epsilon > 0 \).
 Then, prove that \(x = 0 \). (Try proving this by contradiction.)

6. Let \(A \) be a nonempty subset of \(\mathbb{R} \). Suppose that \(\alpha \) is a lower bound of \(A \) and \(\beta \) is an upper bound of \(A \). Show that \(\alpha \leq \beta \).

7. Let \(A \) be a nonempty subset of \(\mathbb{R} \).

 (a) Write a formal definition for the infimum (greatest lower bound) of \(A \).

 (b) Prove the following analogue of Lemma 1.3.7 for the infimum:

 Assume \(s \in \mathbb{R} \) is a lower bound for \(A \). Then, \(s = \inf A \) if and only if, for every choice of \(\epsilon > 0 \), there exists an element \(a \in A \) satisfying \(s + \epsilon > a \).