Math 351, The Sixth Homework Set.

1. Let \(E = \{ r \in \mathbb{Q}_{\geq 0} \mid r^2 < 7 \} \).
 (a) Determine whether \(E \) is an open set as well as a closed set. Explain.
 (b) Find the limit points of \(E \). Justify your answer.

2. The following sets are not compact. For each set, provide a sequence (without proof) contained in the given set that does not possess a subsequence converging to a limit in the set.
 (a) \(\mathbb{Q} \cap [0, 1] \)
 (b) \(\mathbb{R} \)
 (c) \(\{ \frac{1}{n} \mid n \in \mathbb{N} \} \)

3. Find an open cover \(\{ \frac{1}{n} \mid n \in \mathbb{N} \} \) which does not have a finite subcover.

4. Prove that if \(K \) is compact, then sup \(K \) and inf \(K \) both exist and are elements of \(K \).

5. Without using the Heine-Borel Theorem, show that a closed subset \(A \) of a compact set \(K \) is compact.

6. Use the \(\delta - \epsilon \) definition of a limit to establish each of the following.
 (a) \(\lim_{x \to 2} (3x^2 - 5x + 1) = 3 \)
 (b) \(\lim_{x \to 9} \sqrt{x} = 3 \)

7. Give \(\delta - \epsilon \) definitions for the one-sided limits \(\lim_{x \to c^-} f(x) = L \) and \(\lim_{x \to c^+} f(x) = M \).