1. Know the definitions of a group (what are the four axioms?), and how to test for a subgroup (two axioms to check). What is the order of an element/subgroup?

2. Examples of groups:

 (a) Cyclic groups (finite: \mathbb{Z}_n and U_n, and infinite: \mathbb{Z}) and their basic properties (structure of subgroups, locating generators, ...)

 (b) Nonabelian groups (especially D_n and S_n) and how to work with them.

 (c) Miscellaneous groups (K_4, Q_8, matrix groups, \mathbb{Q}, \mathbb{R}, \mathbb{C}, etc.)

3. Know these proofs:

 - Cancellation Laws.
 - Uniqueness of identity and inverses.
 - A subgroup of a cyclic group is cyclic.
 - Cyclic groups are abelian.
 - $(ab)^{-1} = b^{-1}a^{-1}$ for any a and b from a group.
 - Groups of prime order are cyclic.

4. Sample questions:

 (a) What is the identity element for the binary operation $*$ on \mathbb{R} defined by $a * b = 2ab + a + b$? Do inverses exist?

 (b) Let H and K be groups. Show that $H \times K = \{(a,b) : a \in H \text{ and } b \in K\}$, equipped with componentwise multiplication $(a,b) \cdot (c,d) = (ac, bd)$, is also a group (this is called the “direct product” of H and K).

 (c) Compute the orders for the following elements in their respective groups.

 - (a) $-i \in \mathbb{C}$, (b) $(123)(45) \in S_6$, (c) $8 \in \mathbb{Z}_{36}$, (d) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{R})$

 (d) Show that $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subgroup of \mathbb{R}.

 (e) What is the smallest noncyclic abelian group? Smallest nonabelian group?

 (f) Is the union of two groups a group? Prove it or give a counterexample.

 (g) Let G be the group with composition as the binary operation generated by the two elements $\frac{1}{2}$ and $\frac{\pi-1}{2}$. Create the multiplication table for this group (you should find $|G| = 6$). To which group is this isomorphic? Explain.