Math 499, Problem Set #2.

1. Find (and derive) a formula for the area of the of a regular \(n \)-sided polygon whose side has length \(s \). You may find it useful to decompose the polygon into triangles!

2. Without using a calculator, determine which is greater: \(\pi^e \) or \(e^\pi \).

3. Factor \(n^4 + n^2 + 1 \) as the product of two quadratic polynomials with real coefficients.
 Use this to evaluate \(\sum_{n=1}^{\infty} \frac{n}{n^4 + n^2 + 1} \) as a telescoping sum.

4. Show that \(\frac{1}{x} \) cannot be written as the derivative of a rational function (that is, of the form \(\frac{p(x)}{q(x)} \), where \(p(x) \) and \(q(x) \) are polynomials).

5. Show that if 5 points are all in, or on, a square whose sides have length 1, then some pair of them will be no further than \(\sqrt{2} \) apart.

6. Suppose that \(f : \mathbb{R} \to [0, \infty) \) satisfies \([f(x + y)]^2 - [f(x - y)]^2 = 4f(x)f(y) \) for any real numbers \(x \) and \(y \). Prove by induction (or otherwise) that \(f(nx) = nf(x) \) for any integer \(n \). (It may help to find the relation between \(f(x) \) and \(f(-x) \).)

7. (a) For any nonnegative real numbers \(a \) and \(b \), show that \(\frac{a+b}{2} \geq \sqrt{ab} \).
 (Its generalization is the useful Arithmetic Mean-Geometric Mean Inequality: For any \(a_1, ..., a_n \geq 0 \), then \(\frac{a_1 + ... + a_n}{n} \geq \sqrt[1/a_1 \cdots a_n]{a_1} \cdots a_n \). You need not prove this here.)
 (b) Show that if \(\sum_{n=1}^{\infty} a_n \) converges, then \(\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}} \) also converges.