Pronounced “Lay Tech”
Getting Started In \LaTeX

Brian David Sittinger

3 March 2010
Outline:

• Starting materials.

• Text in \LaTeX.

• Math formulae in \LaTeX.

• Resources.
(1) **Starting Materials.**

- An editor (*WinEdt*)

- \LaTeX\ implementation (*MIKTeX*)

- Templates (*What type of document: article, slide, etc.*)
Basic Template for an “Article”

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
%Write your content here.
%The percent denotes a comment!
\end{document}
A first example.

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\begin{center}
Why “Lord of the Rings” Rules
\end{center}
It just does. Period.
\end{document}
(2) **Text in \LaTeX.**

Font styles.

This is fun.
\textbf{This is fun.} \%Boldface
\it{This is fun.} \%Italicise

This is fun.

This is fun.

This is fun.
Vertical spacing

This is fun. Truly it is.

%The \ denotes a new line
This is fun. \Truly it is.

%\vspace{length} also denotes vertical spacing

This is fun. Truly it is.

This is fun.
Truly it is.
Horizontal spacing

\begin{itemize}
 \item Yo yo
 \item Yo\,, yo \% \, denotes 1 space
 \item Yo\;yo \% \; denotes 2 spaces
 \item Yo\quad yo \% \quad denotes 4 spaces
 \item Yo\qquad yo \% \qquad denotes 8 spaces
 \item \%\hspace{length} also denotes horizontal spacing
\end{itemize}

\begin{itemize}
 \item Yo yo
 \item Yo yo
\end{itemize}
Centering

\begin{center}
Akira Kurosawa
\end{center}

The great Japanese director who arguably made the most ‘western’ of movies in the Far East.

Akira Kurosawa

The great Japanese director who arguably made the most ‘western’ of movies in the Far East.
Reserved symbols

Ampersand: Use `\&`
Left brace: Use `\{`
Right brace: Use `\}`

Dollar: Use `\$
Percent: Use `\%`
Pound: Use `\#
Underscore: Use `_`
(3) **Math formulae in \LaTeX.**

- Use dollar signs $ to **begin** and **end** a mathematical expression.

- Similarly, use **double dollar signs** $$$ (begin and end) for centering a mathematical expression.

- When in doubt, use braces!
Examples: Arithmetic.

\[(2 + 3) \times (5 - 3) = 10\]

$$\left(3^2 \cdot 2^{11}\right)/18 = 1024$$

\[(2 + 3) \times (5 - 3) = 10\]

\[(3^2 \cdot 2^{11})/18 = 1024\]
Examples: More Arithmetic.

% Fractions: Use \frac{num}{denom}.
\[
\frac{1}{3} + \frac{7}{12} = \frac{11}{12}
\]

% Square roots: Use \sqrt{k}.
% n-th roots: Use \sqrt[n]{k}.
\[
\sqrt{5} + \sqrt[3]{11}
\]

\[
\frac{1}{3} + \frac{7}{12} = \frac{11}{12}
\]

\[
\sqrt{5} + \sqrt[3]{11}
\]
Examples: Comparison Symbols.

The $>$, $<$, and $=$ signs are as usual.

\[
\begin{align*}
5 \neq 3 \\
5 \geq 3 \\
3 \leq 5 \\
1 \equiv 5 \mod 4 \\
1 \not\equiv 2 \mod 4
\end{align*}
\]
Examples: Sets.

Use backslashes with the curly braces!

\[
\mathbb{N} = \{1, 2, 3, \ldots\}
\]
\[
\mathbb{Q} = \{\frac{m}{n} \mid m,n \in \mathbb{Z} \text{ and } n \neq 0\}
\]

\[N = \{1, 2, 3, \ldots\}\]
\[Q = \{\frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } n \neq 0\}\]
Examples: Mathematical lettering.

\text{P}\quad %non-algebraic letters in math mode
\text{P}\quad %algebraic letter
\text{mathbb{P}}\quad
\text{mathcal{P}}\quad
\text{mathfrak{P}}\quad %gothic (fraktur) letter
Examples: Greek lettering.

Use a backslash before the letter.

\[\alpha \quad \xi \quad \delta \quad \Delta \]

\[\alpha \quad \xi \quad \delta \quad \Delta \]
Examples: Functions.

Define $\phi : \mathbb{C} \to \mathbb{C}$ by
$$\phi(z) = \frac{az + b}{cz + d}.$$
Examples: Special Functions.

Use backslashes before the abbreviations. Braces or parentheses may be used to hold their arguments.

\[
\sin{x}\\
\cos(3\theta)\\
\ln(a^{x^2}) = x^2 \ln{a}
\]

\[
\sin x \\
\cos(3\theta) \\
\ln(a^{x^2}) = x^2 \ln a
\]
Examples: An algebra example.

\textbf{The Quadratic Formula:} \(\text{\\}
\) Given a quadratic equation \(ax^2 + bx + c = 0\)

with \(a \neq 0\), its solutions are given by

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\]

\textbf{The Quadratic Formula:} \\
Given a quadratic equation \(ax^2 + bx + c = 0\) with \(a \neq 0\), its solutions are given by

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\]
Example: Summation.

$$\sum_{n = 1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

$$\sum_{n = 1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
Example: Limits and Derivatives.

\[
\lim_{x \to 5} (x^2 + 5) = 30 \quad \lim_{x \to 5} (x^2 + 5) = 30 \quad \frac{d}{dx} (e^{3x}) = 3 e^{3x}
\]

\[
\lim_{x \to 5}(x^2 + 5) = 30 \\
\lim_{x \to 5} (x^2 + 5) = 30 \\
\frac{d}{dx}(e^{3x}) = 3e^{3x}
\]
Example: Integrals.

\[\int 3x^2 \, dx = x^3 + C \]
\[\int_{0}^{1} 3x^2 \, dx = 1 \]
\[\int_{0}^{1} 3x^2 \, dx = 1 \]

\[\int 3x^2 \, dx = x^3 + C \]
\[\int_{0}^{1} 3x^2 \, dx = 1 \]
\[\int_{0}^{1} 3x^2 \, dx = 1 \]
Creating lists.

Use “enumerate” or “itemize” (with begin and end tags).

\begin{enumerate}
\item $\int 3x^2 \, dx = x^3 + C$
\item $\displaystyle\int_{0}^{1} 3x^2 \, dx = 1$
\end{enumerate}
Nested lists.

\begin{enumerate}
\item Differentiate the following functions.
\begin{enumerate}
\item $y=3x^4-2x+e^x-7$
\item $y=2x^5\sin{x}$
\end{enumerate}
\item Find the equation of the tangent line to $y=4\cos(2x)$ at $x=\frac{\pi}{12}$.
\end{enumerate}
1. Differentiate the following functions.

 (a) \(y = 3x^4 - 2x + e^x - 7 \)

 (b) \(y = 2x^5 \sin x \)

2. Find the equation of the tangent line to \(y = 4 \cos(2x) \) at \(x = \frac{\pi}{12} \).
(4) **Resources.** (Both available online for free!)

- Not So Short Introduction to \texttt{\LaTeX}-2\(\varepsilon\), Tobias Oetiker et al.

- Math into \texttt{\LaTeX}, George Grätzer.