1. a. When multiplying polynomials, you should multiply each term of the first polynomial to each term of the second polynomial and then ____________________.

b. If \(P \) is equal to a second degree polynomial and \(Q \) is equal to a third degree polynomial, what is the degree of \(P + Q \)?

c. If \(P \) is a second degree polynomial and \(Q \) is a third degree polynomial, what is the degree of \(P \) multiplied by \(Q \)?

d. The method that shows you how to multiply two polynomials is known as the __________ method.

e. If you subtract \(5x^2 - 4x + 6 \) from \(3x^2 - 2x + 8 \) what is left?

2. a. If the length of a rectangle is \(x + 9 \) and the width is \(x + 2 \), what is the formula for the area in terms of \(x \)?

b. The area of a circle is \(\pi r^2 \) where \(r \) is the radius and \(\pi \) is an irrational number equaling close to 3.14. What is the area of the circle if \(r \) is equal to 7?

c. A rectangle has sides equaling \(y + 4 \) and \(y - 2 \), what is the area in terms of \(y \)?

d. The area of a circle is \(\pi r^2 \) where \(r \) is the radius and \(\pi \) is an irrational number equaling close to 3.14. What is the area of the circle if \(r \) is equal to 3.5?

e. If \(P = 2x + 3 \) and \(Q = 4x + 5 \), what is \(P \) multiplied by \(Q \)?

3. a. What is the area of a square with sides equaling \(x + 6 \) in terms of \(x \)? What is the area if \(x \) equals 4?

b. What is the volume of a cube in terms of \(x \) if the sides are equal to \((x + 1) \)?

c. What is the volume of a cube in terms of \(x \) if the sides are equal to \((x - 1) \)?

d. The height of a box is 3 less than its length and the length is 5 more than its width. Express the volume in terms of length \(L \).

e. What is \((x^2 + 2)^2 \)?