1. If \(f(x) = \sin x \) and \(g(x) = x^2 \), compute \((f \circ g)(x) \), and \((g \circ f)(x) \). Are they equal?

2. Find the domain of \(f(x) = \frac{\sqrt{x - 5}}{x^4 - 16} \).

3. Compute each of the following limits.

 (a) \(\lim_{x \to 2} \frac{3x^2 - 4}{x + 2} \)

 (b) \(\lim_{x \to -2} \frac{x^2 - 4}{x^3 + 4x^2 + 4x} \)

 (c) \(\lim_{x \to 4} \frac{\sqrt{25 - x^2} - \sqrt{2x + 1}}{4 - x} \)

 (d) \(\lim_{x \to \infty} \sin(2x) \)

 (e) \(\lim_{x \to \infty} \frac{7 - 3x^2}{2x^2 + 1} \)

 (f) If \(e^{-2x} < f(x) < \frac{2}{x^4} \) for \(x > 0 \), what is \(\lim_{x \to \infty} f(x) \)?

 (g) Use the Squeeze Theorem to find \(\lim_{x \to 0^+} \sqrt{x} e^{\sin(3\pi x^4)} \).

4. Suppose that an object is dropped a 1000 foot cliff, and has position given by \(s(t) = 1000 - 10t^2 \) at any time \(t \) in seconds.

 (a) What is the object’s average velocity during the first 5 seconds?

 (b) Use the definition of the derivative to compute the velocity of the falling object.

 (c) How fast is the object travelling at \(t = 5 \) seconds?

5. Differentiate the following functions.

 (a) \(y = 45x^{10} + 7x^8 - 5x^3 + 2x - \pi \)

 (b) \(y = \frac{7x + 8}{\sqrt{x}} \)

 (c) \(y = x^7 e^x \)

 (d) \(y = \frac{2x + 1}{x^3 - 9} \)

6. Find the equation of the tangent line to \(y = \frac{2x + 1}{x^3 - 9} \) at \(x = 2 \).

7. Using the Intermediate Value Theorem, explain why \(f(x) = x^7 - 3x + 1 \) has at least one real root.
8. (a) Carefully define what it means for \(y = f(x) \) to be continuous at \(x = a \).

(b) How can a function fail to be continuous at a point?

(c) Suppose that \(f(x) = \frac{x^3 - 49x}{x - 7} \) for all \(x \neq 7 \).
 How should we define \(f(7) \) so that \(f \) is continuous at \(x = 7 \)?

9. Give an example of a continuous function that fails to be differentiable at a point.

10. Be able to read limits from the graph of a function!