Homework #4

1. Each of the following CFGs has a production using the symbol Λ and yet Λ is not a word in its language. Using the algorithm in Chapter 13, show that there are other CFGs for these languages that do not use Λ-productions.

(i) $S \rightarrow aX \mid bX$
 $X \rightarrow a \mid b \mid \Lambda$

(ii) $S \rightarrow aX \mid bS \mid a \mid b$
 $X \rightarrow aX \mid a \mid \Lambda$

(iii) $S \rightarrow aS \mid bX$
 $X \rightarrow aX \mid \Lambda$

(iv) $S \rightarrow XaX \mid bX$
 $X \rightarrow XaX \mid XbX \mid \Lambda$

2. Convert each of the following CFGs to CNF

(i) $S \rightarrow SS \mid a$

(ii) $S \rightarrow aSa \mid SSa \mid a$

(iii) $S \rightarrow aXX$
 $X \rightarrow aS \mid bS \mid a$

(iv) $E \rightarrow E + E$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow 7$

 The terminals are $+ * () 7$
3. Consider the following deterministic PDA

(i) What is the language accepted by this PDA?
(ii) Find a CFG that generates this language.
(iii) Is this language regular?
4. Consider the following nondeterministic PDA

Show that the language recognized by this machine is

\[\text{TRAILINGCOUNT} = \{ s a^{\text{length}(s)} \} \]

= any string \(s \) over the alphabet \(\{ab\} \) followed by as many \(a \)'s as \(s \) has letters

5. Using the algorithm of Theorem 30, construct a PDA that accepts the same language as the following grammar.

\[
S \rightarrow XaaX \\
X \rightarrow aX | bX | \Lambda
\]